北师大版《实数》教学设计推荐
很多学生及老师想知道北师大版《实数》教学设计的情况,小编整理了一些北师大版《实数》教学设计推荐希望对你有帮助。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。下面是小编为大家整理的北师大版《实数》教学设计五篇,希望大家能有所收获。
北师大版《实数》教学设计1
教学目标:
知识与能力
1、了解无理数和实数的意义,能对实数按要求进行分类。
2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。
3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。
4、会进行实数的大小比较,会进行实数的简单运算。 过程与方法
1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。
2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。 情感与态度
1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。
2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。 教学重难点及突破 重点
1、了解实数的意义,能对实数进行分类;
2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。 难点
1、用数轴上的点来表示无理数;
2、能准确无误地进行实数运算。 教学突破
通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。同时,让学生动手作图,直观展现实数和数轴的一一对应关系。教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。教学准备:直尺,圆规。 教学过程
一、创设情境,导入新课
1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。下面使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3、1/4 2/5 1/3 学生计算后举手回答,教师将答案书写出来。 3=3.0 0.25 0.4
2、问题:你发现了什么?
学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。
问题:那我们前面所学的许多平方根和立方根都是无限不循环小数,那这些小数是不是有理数?
学生很自然的回答不是,从而引入新的数——无理数,把数扩充到实数范围也就顺利成章。
二、自主探索,领悟内涵
由前面我们知道,任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数;有理数和无理数统称为实数。分类如下:整数 实数
有限小数或无限循环小数
有理数分为正有理数和负有理数,那么无理数呢?是无理数吗?
学生回答:可化为无限不循环小数,所以也只能化为无限不循环小数,可见与均是无理数。可知,无理数也有正、负之分,因此把正有理数、正无理数和在一起形成正实数,同样,负有理数、负无理数合在一起称为负实数,而0既不是正数也不是负数。从而得到实数的另一种分类方法:正有理数 负有理数 0
三、拓展延伸,操作感知
探究1 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? O1学生之间互相交流、讨论,一段时间后请学生回答:点01的坐标是π。 肯定学生的回答,说明:无理数π可以用数轴上的点表示出来。 探索2你能在数轴上找到表示的点,这说明一个什么问题? 学生讨论交流,并举手回答。教师肯定学生的表现,并总结:
每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点,有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
四、练习巩固,应用提高
例1 整数有: { } 无理数有:{ } 有理数有:{ } 学生认真完成,并举手回答。根据学生的回答,适当讲解。
五、课堂总结,作业布置
1、什么叫做无理数?什么叫做有理数?
2、有理数和数轴上的点一一对应吗?无理数和数轴上的点一一对应吗?实数和数轴上的点一一对应吗?
P86-87习题14.3第
1、
2、3题; 板书设计: 实数
1、有理数和无理数统称为实数。
2、实数分类结构图(略)
3、实数与数轴上的点一一对应。 课后反思
本节课,结合前面的有理数,能使学生在给出的一些数中判断出哪些是有理数,哪些是无理数是本节难点,再通过多的举例练习,让他们找到判断的关键,达到了设计的目标。
北师大版《实数》教学设计2
〖教学目标〗
(-)知识目标
1.了解有理数的运算法则在实数范围内仍然适用. 2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式 . 4.了解二次根式和最简二次根式的概念.
(二)能力目标
1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.
(三)情感目标
通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算、,重要的是培养
这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务. 〖教学重点〗
1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算. 2.发现规律:.并能用规律进行计算. 〖教学难点〗
类比的学习方法. 2.发现规律的过程. 〖教学方法〗 尝试法 〖教学过程〗
一、课前布置
自学:阅读课本P112~P113,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).
二、师生互动
(一)二次根式的理解:形如()的式子叫做二次根式 说明:1.被开方数大于0; 2. ()具有非负数的特性. 3.性质:一般地是a的算术平方根,于是有? 练习:
1.若有意义,则______ 2. (06泸州中考)要使二次根式有意义,字母x的取值必须满足的条件是() A. x≥1
B. x≤1
C. x>1
D. x<1 3.(06海淀)已知实数x,y满足,求代数式的值。 4.计算:(1); (2); ? 解:1.
2. A 3. 解:依题意
解得
当时,
4.解:(1); (2)。
(二)一起交流课本P112的“做一做”
[师生共析]在有理数范围内,可以进行加、减、乘、除和乘方运算,运算后所得到的数仍然是有理数。把数从有理数扩充到实数以后,在实数范围内不仅可以进行加、减、乘、除、乘方运算,而且正数和零可以进行开平方和开立方运算,负数可以进行开立方运算。即:正数和零的平方根是实数,任何一个实数的立方根是实数。
关于有理数的运算律和运算性质,在进行实数运算时仍然成立。 1.理解积的算术平方根的性质,必须注意:
(1)被开方数的每一个因子或因式必须是非负数,没有这个条件,性质不成立.(2)这个公式的作用是化简二次根式,如果被开方数中有的因式(或因子)能开得尽方,可以利用此公式及公式=a(a≥0),将这些因式(或因子)开出来,因此化简二次根式时,一般先将被开方数进行因式分解或因子分解.(3)积的算术平方根的性质对于当因子是三个或三个以上时仍然成立. 如:= ···(a≥0,b≥0,c≥0,d≥0).(4)积的算术平方根的性质反过来,就得到二次根式的乘法公式,即·=(a≥0,b≥0),运用这个公式可以进行简单的二次根式的乘法运算. 2. 二次根式的性质:=· (a≥0,b≥0), =(a≥0,b>0).
(三)利用性质化简
[师]利用你自学的知识,说一说什么样的二次根式需要化简
[生]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简. [生]被开方数中含有分母,需要化简,化简后被开方数中没有了分母.如:
[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.(鼓励学生讲解教师提供的例题) 如:
巩固练习:
化简:(1); (2);(3);(4);(5);(6).
(四)最简二次根式
[师生共析]最简二次根式所满足的条件:
条件一,即为被开方数不含分母;条件二,即为被开方数的每一个因子或因式的指数都小于根指数. 要判断一个根式是否为最简二次根式,两个条件缺一不可.
(五)引导学生小结:
1.化二次根式为最简二次根式的方法:(1)如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.(2)如果被开方数是整数或整式,先将它分解因子或因式,然后把能开得尽方的因子或因式开出来,从而将式子化简. 2. 二次根式的化简应注意以下问题:
(1)被开方数含有带分数,通常化成假分数. (2)被开方数是和、差的形式,应把它分解因式,化成积的形式.(3)根号内的分子或分母移到根号外时,应保留其对应的位置(即原来是分母的移到根号外后还是分母).
(4)在整个化简过程中应注意符号问题,特别是注意被开方数是非负数这个隐含条件. 练习:1 下列各式中哪些是最简二次根式?哪些不是?并说明理由. (1);(2) ;(3) ;(4);
(5);(6)(x≤0);(7)
本题考查最简二次根式的定义,解题思路是根据二次根式的定义逐个判断. 1.解
只有(3)、(5)、(6)是最简二次根式. 理由:
(1) 中的0.3不是整数,所以不是最简二次根式;
(2) 中的27x=32·3x,因数含有能开得尽方的因数,所以不是最简二次根式. (3)的8a2b=(2a)2·2b,因式含有能开得尽方的因数,所以不是最简二次根式; (4)中的a2+a4=a2(1+a2),因式含有能开得尽方的因数,所以不是最简二次根式; 总结
本题的易错点是误认为,不是最简二次根式,误认为是最简二次根式.
三、补充练习 作业:P114习题 〖巩固练习〗
1. 下列各式:,,,,,, (a<),中是二次根式的有
. 2. x为何值时,下列各式在实数范围内有意义. (1);
(2);
(3).
3. 计算下列各式: (1)()2;
(2);
(3)(2)2.
〖答案提示〗
1.分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断. 解
∵
,,的根指数不是2,∴
它们不是二次根式. ∵
在中,被开方数-4<0,∴
不是二次根式. ∵
在中的被开方数2a-1有可能小于0,∴
不是二次根式. ∵
在中,被开方数4>0,∴
是二次根式. ∵
在=中被开方数(a+1)2≥0,∴
是二次根式. ∵
在中被开方数a2+2>0,∴
是二次根式. 总结
本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键. 2.解
(1)2x+3≥0,即x≥-. ∴
当x≥-时,有意义. (2)1-3x≥0,即x≤. ∴
当x≤时,有意义. (3)∵
x不论取何实数,总有(x-5)2≥0, ∴
x为任意实数,有意义.3.分析:(1)由()2=a(a≥0)直接可得,(2)要注意应先计算,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方. 解
(1)()2=15; (2)==;
(3)(2)2=22×()2=4x. 总结
本题的易错点是第(3)小题的2不平方,错成(2)2=2x.
八、板书设计
课题 实数的运算 二次根式
利用性质化简
例2 二次根式性质
例1
最简二次根式
课堂练习
北师大版《实数》教学设计3
教学目标
知识与技能:
1、了解无理数和实数的概念
2、会对实数按照一定的标准进行分类,培养分类能力。
3、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的义。
4、了解实数范围内相反数和绝对值的意义。
过程与方法 :
1、通过无理数的引入,使学生对数的认识由有理数扩充到实数
2、经历对实数进行分类,发展学生的分类意识
3、经历观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的。
4、通过类比使学生明白实数范围内的绝对值、相反数、倒数等含义与有理数范
情感态度与价值观 :
1、了解到人类对数的认识是不断发展的,体会数系扩充对人类发展的作用.
2、学生在对实数的分类中感受数学的严谨性。
3、培养学生的合作交流能力与学习数学的兴趣 ,培养学生敢于面对数学活动中的困难,并能有意识地运用已有知识解决新的知识。
2. 教学重点/难点
教学重点
知道无理数是客观存在的,了解无理数和实数的概念,会判断一个数是有理数还是无理数.
教学难点
判断个别特殊的数是有理数还是无理数,体会数轴上的点与实数是一一对应的关系。 3. 教学用具 教学准备:多媒体 教学过程:
1、认识无理数
问题1:请大家把下列各数3,
小数,是循环小数还是不循环小数?
大家可以每个小组计算一个数,这样可以节省时间。
3=3.0,4/5=0.8,
生:3,是有限小数,=, 是无限循环小数。 表示成小数,它们是有限小数还是无限
师:上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示。反过来,任何有限小数或无限循环小数都是有理数。
上面研究过的是无限不循环小数。
无理数定义:无限不循环小数叫无理数
师:除上面的,等,圆周率π=3.14159265?也是一个无限不循环小数,0.5858858885?(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数。
问题2: 是无理数吗? 2是无理数吗? 0.01001000100001?是无理数吗? 问题3:你能再举出一些你见到过的无理数吗?
问题4:让学生在独立思考的基础上,进行讨论交流:有理数存在哪几种形式? 在学生回答的基础上让学生总结出无理数常见的三种形式:
①开方开不尽的数都是无理数(如
②圆周率π类(简记为 带π的)
③有规律但不循环的无限小数(简记为人造无理数)。
问题5:带根号的数一定是无理数么?
2、引入实数
问题6:有理数和无理数的定义有什么区别?
生:无理数是无限不循环小数,有理数是有限小数或无限循环小数.
师:给出实数定义:有理数与无理数统称为实数。
3、对实数进行分类
师:请大家试着按不同的标准给实数分类。
教师引导学生分析,得出结论:实数也可以分为正实数、0、负实数三大类。 生讨论后回答:
实数:
4、补例:把下列各数分别填入相应的集合里: 正有理数{
正无理数{ } 负有理数{ } 负无理数{ } }
学生先自己做,做完之后互相讨论,再回答。
5、数轴上的点与实数之间的关系
师:你会在数轴上画出表示的点么?
让学生尝试在数轴上画出表示、等的点。
问题7:你们发现数轴上的点与实数之间存在什么关系?
当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
6、基础练习
1.判断正误,若不对,请说明理由,并加以改正.
(1)有理数包括整数、分数和零??????????????????? ( 对) (2)无理数都是开方开不尽的数???????????????????( 错 ) (3)不带根号的数都是有理数?????????????????????( 错 )(4)带根号的数都是无理数???????????????????????( 错)
(5)无理数都是无限小数????????????????????????(对 )
(6)无限小数都是无理数????????????????????????( 错 )
(7)无理数就是带根号的 数??????????????????????? ( 错 )
(8)无限小数都是有理
数????????????????????????( 错 )
2.数中,无理数有( C ).
(A)0个; (B)1个; (C)2个; (D)3个.
3.填空
(1)整数集合{
(2)有理数集合{
(3)无理数集合{
(4)实数集合{ ?}; ?}. ?}; ?}; 课堂小结
这节课你有什么新发现?知道了哪些新知识?
无理数的特征:
1.圆周率π及一些含有π的数
2.开不尽方的数
3.无限不循环小数
注意:带根号的数不一定是无理数。 板书
实数(1)
1、无理数的定义:
无理数的常见形式:
2、实数定义:。。。
3、实数的分类
(1)按有理数和无理数分 (2)按正负分
北师大版《实数》教学设计4
知识与技能:
①了解无理数和实数的概念以及实数的分类; ②知道实数与数轴上的点具有一一对应的关系。 过程与方法:
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:
①通过了解数系扩充体会数系扩充对人类发展的作用;
②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
2. 教学重点/难点
教学重点:
①了解无理数和实数的概念; ②对实数进行分类。 教学难点:对无理数的认识。
3. 教学用具 4. 标签
教学过程
一、复习引入无理数:
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。
二、实数及其分类:
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:
按照定义分类如下:
按照正负分类如下:
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就是 。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
三、应用:
1、下列实数中,无理数有哪些?
注:①带根号的数不一定是无理数,
②无限小数不一定是无理数,无限不循环小数一定是无理数。
2.判断下列说法是否正确:
⑴无限小数都是无理数; ⑵无理数都是无限小数; ⑶带根号的数都是无理数;
⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
3、任意写出三个合适的数填在相应的集合里:
四、课堂小结
1、无理数、实数的意义及实数的分类.
2、实数与数轴的对应关系 .
五、布置作业 习题6.3第
1、
2、3题;
北师大版《实数》教学设计5
一、教材分析
1、教材的地位和作用
本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。
2、教学重难点
根据教学大纲对这部分内容的要求及本课的特点,结合学生实际情况,我把 本节课的教学重难点确定为:
重点:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
难点:对无理数的认识。
3、教学目标
知识与技能:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,
培养从特殊到一般、具体到抽象的逻辑思维能力;
渗透数形结合及分类的思想。
情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,
体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
二、学情分析
新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。
三、教法学法分析
1.教法分析
为了更好的把握教学内容的整体性、连续性,本节课采用问题导入法引入新课,让学生回顾认识数的过程;通过类比归纳法和探究分析法经历实数的认识过程,从而较好地完成实数概念的构建和实数与数轴上的点的一一对应关系的认识,达到教学目标。
2.学法分析
为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流相结合,把无理数和实数的概念及知道实数与数轴的点的一一对应关系确定为教学重点;无理数的认识确定为教学难点。课堂上充份调动学生的积极性,启发学生进行观察、类比、分析,让参与到概念的建立,真正的让学生进行探究,突出学生教学主体的地位。
四、 教学媒体
教学形式上充分利用电脑多媒体优化数学课堂教学,从生活实际出发,让学生亲身感受数学的奇妙,激发学生学习的兴趣。增强用数学的意识,养成及时归纳总结的良好习惯,提高课堂效率。
五、课堂结构
曾经有人说过这么一句话“人的心灵深处都有一个根深蒂固的需要,这就是希望感到自己是一个发现者,研究者,探究者。”为此在教学过程中我努力贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,我设计了以下课堂教学流程。
第一个环节:探究新知,引入课题
第二个环节:自学新知,自主探索
第三个环节:探究新知,拓展深化
第四个环节:应用新知,及时反馈
第五个环节:课堂小结,反思新知
第六个环节:布置作业,巩固新知
六、教学过程
1、探究新知,引入课题
问题1 有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?
师生活动:学生完成分数到小数的换算,观察小数的形式。教师逐步引导学生对小数点后数字的探究,让学生发现:任意一个分数一定都能写出有限小数或是无限循环小数的形式;进一步引导学生对整数的研究,让学生得出结论:整数可以看成小数点后是0的小数。最后总结:任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数。
设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数和无限循环小数的形式。注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的,激发学生的求知欲。
2、自学新知,自主探索
问题2 你认为小数除了上述类型外,还会有什么类型?
师生活动:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,他们不同于有限小数和无限不循环小数,是一类不同于有理数的数,由此教师给出无理数的概念:无限不循环小数叫无理数,并指出π=3.141592 65…也是无理数。像有理数一样,无理数也有正负之分,例如、、π是正无理数,—,—,—π是负无理数,进而给出实数的概念及实数的分类。分类如下:
设计意图:让学生回忆曾经学过的无限不循环小数是不同于有理数的数,为教师引出无理数概念作准备。
问题3 因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?
师生活动:教师在逐步引导时,启发学生类比有理数的分类,明确分类的基本原则:按照某个标准,不重不漏。学生独立思考后,小组讨论得到如下分类:
设计意图:通过学生互相的讨论和交流,可以加深对无理数和实数的理解,同时让学生明确实数的分类可以有不同的方法,初步形成对实数整体性的认识。
3、探究新知,拓展深化
问题4 我们知道每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?
师生活动:学生独立思考后讨论交流,借助第6.1节的得出和手中的学具进行操作(图1)
设计意图:通过具体操作,让学生知道无理数也可以在数轴上表示。
问题5 直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
师生活动:教师参与并指导实际操作,指出无理数π可以用数轴上的点表示出来(图2)。由于学生知识水平的限制,他们不可能也没有必要将所有无理数都用数轴上的点表示出来。解决了问题4,5后,教师直接给出实数与数轴上的点是一一对应的结论。
教学设计的优劣对于提高教学质量,培养学生思维,调动学生的积极性有着十分重要的意义。以下是小编整理的高中数学教学设计题模板,供您阅读,参考。希望对您有所帮助!
高中数学教学设计题模板1
教学设计
题目:《等差数列》教学设计
考生姓名:赵春丽 设计科目:数学
学 号: 41005211 专业班级:数学四班
高中数学教学设计
学科:数学 年级:高二 课题名称:等差数列
一、课程说明
(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。(二)学生分析:此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。(三) 教学目标:
1.通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2.通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。
3.在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4.让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。
5.让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。 (四) 教学重点:1.让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。
2.能够灵活运用公式并且能把相应公式与题相结合。
(五) 教学难点:
1.让学生掌握公式的推导及其意义。 2.如何把所学知识运用到相应的题中。
二、课前准备
(一) 教学器材
对于一对一教教采用传统讲课。一张挂历。
(二) 教学方法
通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。
(三) 课时安排
课时大致分为五部分:
1.联系实际提出相关问题,进行思考。 2.以我教她学的模式讲授相关章节知识。
3.让学生练习相关习题,从所学知识中找其相应解题方案。 4.学生对知识总结概括,我再对其进行补充说明。 5.布置作业,让她课后多做练习。
三、课程设计 (一) 提出问题 【引入】根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?
思考 1) 2) 3) 1,3,5,7,9.......
2,4,6,8,10.......
6,6,6,6,6......
这些每一行有什么规律?
(二) 分析问题并讲解
1.通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”
2.设首项为 a1 ,公差为d。由思考题 1) 2) 3)可观察出什么?由学生通过她的发现来推导总结出
an?a1?(n?1)d?nd?(a1?d
3.通过分析通项公式的特点,做下题(学生自己分析,思考来做。)例:已知在等差数列{an}中,a5??20,a20??35,试求出数列的通项公式?
通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质: 等差数列{an},{bn} 1)
an?a1an?amd??(n?m?1,n,m?N?)。
n?1n?m2) 若m?n?p?q(m,n,p,q?N?)
p?q则2an?ap?aq。 则am?an?ap?aq(反之不真)。 3) 若m?n,2m?4)am,am?k,am?2k,am?3k,??,am?nk也构成等差数列,公差为kd。
5) a1?a2???am,am?1?am?2???a2m,a2m?1?a2m?2???a3m,?也构成等差数列,其公差为md。
26) 数列{can差数列。 7)
?d}为等差数列,{an?bn},{?an??bn??}为等a1?an?a2?an?1?a3?an?2???ak?an?1?k
让学生根据所讲性质做练习题 练习: 1) a1?a4?a7?15,a2a4a6?45
{an}为等差数列,求an?
2) 已知等差数列{an} , a1?33,a7?75
求a2,a3,a4,a5,a6及an?
4.由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。 5.总结,串讲当日所学
给出题目:1?2?3?4??98?99?100 让她求其和Sn,并思考如何快速计算?
(三) 布置作业
1.总结当日所学。 2.做练习册上章节习题。
3.根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。
四、设计理念
以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。
五、教学设计反思
本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。
教学设计要符合学生特点,才能更好地帮助学生学习。
高中数学教学设计题模板2
高中数学教学设计——函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.教学目标
1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.教学设计
一、问题情景
1.观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2.观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2.提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用 [例 题]
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练 习]
1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
2.f(x)=-x3|x|的大致图像可能是(
)
3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数.4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数.
4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
高中数学教学设计题模板3
等比数列的前n 项和
( 第一课时)
一. 教材分析。
( 1)教材的地位与作用:《等比数列的前 n 项和》选自《普通高中课程标准数学教科书·数学
(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前 n 项和”是“等差数列及其前 n 项和”与“等比数列”
。 内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓 , 表现欲较强 ,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深
刻,因而片面、不够严谨。
(3)从学生的认知角度来看: 学生很容易把本节内容与等差数列前
n 项和从公式的形成、特点等方
面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前
n 项和公式
的推导有着本质的不同,这对学生的思维是一个突破,另外,对于
q = 1 这一特殊情况,学生往往
容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前
n 项和公式的推导过程、公式的特点,在此
基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类
比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的
---
-
能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的
体验,感受数学的奇异美、结构的对称美、形式的
简洁美。
四.重点 , 难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中
q 与 1 的关系 。
五.教法与学法分析 .
培养学生学会学习、学会探究是全面发展学生能力的重要前提, 是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的, 而是由认知主体主动建构的。”这个观点从教学的角度来理解就是: 知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:
3 分钟)
[ 利用投影展示 ] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,
对他说:我可以满足你的任何要求。西萨说:请给我棋盘的
64 个方格上,第一格放
1 粒小麦,第二
格放 2 粒,第三格放 4 粒,往后每一格都是前一格的两倍,直至第
64 格。国王令宫廷数学家计算,
结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节
课的主题与重点 ]
---
-
提出问题 1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数 1
2
222
326
3(二)师生互动,探究问题 [5 分钟 ] 提出问题 2:1+ 2+ 2 + 2 +
23
+2
63
究竟等于多少呢 ?
) 有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。 提出问题3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,
后一项都是前一项的 2
倍)
提出问题 4:如果我们把每一项都乘以
2,就变成了它的后一项,那么我们若在此等式两边同以
得到另一式:
[ [ 利用投影展示 ]
...S6463 1 2 2
2
3
2
2.........(1)
2S64 22 2
2
3
2
46
42.......(2)
比较( 1)(2 )两式,你有什么发现?(学生经过比较发现:( 1)、( 2)两式有许多相同的项)
提出问题 5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:
S 64
26
41
[ 这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错
位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇
]
这时,老师向同学们介绍错位相减法,并
提出问题 6:同学们反思一下我们错位相减法求此题的过程,为什
么( 1)式两边要同乘以 2 呢?
[这个问题的设计意图 :让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导
做好铺垫 ]
(三)类比联想,解决问题。 [ 时间设定: 10 分钟 ]
提出问题 7: 设等比数列 a a n 的首项为1, 公比为 q, 求它的前项和 Sn
即 S n a1 a2 a3
a
n
学生开展合作学习 , 讨论交流,老师巡视课堂,发现有典型解法的,叫同
学板书在黑板上。
[ 设计意图:从特殊到一般 ,从模仿到创新 , 有利于学生的知识迁移和能力提高,让学生在探索过程
中,充分感受到成功的情感体验 ]
---
2,
-
(四)分析比较,开拓思维。 [ 时间设定: 5 分钟 ]
将不同的的方法进等行比分析数评列价。{根an据},学公生比的为认识q状,况它,的可前能有n如下项几和种方法:
错位相减法 1:
S
n
aa1 q a q
21
1
a q
n 2
a q
n 1
1
qSn
a1 q a1q
2
(1 q)Sn a1等比数列
a1 q a1q a1 qna1q
n2n1n
错位相减法2{ an },公比为
a2 a2
q
,它的前 n 项和
Sn a1
qS n
a3 a3
a n 1a
an an
n 1
an q
(1 q ) Sna1 an q
等比数列 {an },公比为
,它的前 n 项和
提出公比 q
qSn a
1a2 a3
2S a a q a q
n
1
1
aa1
n 1n
a q
1
1
n2
a q
1 1
n1
1 1
a
1
q(a a q
1a q
n 1n
n
3a q )
n2
aq
( Sn
a1q )
(1 q)Sn
a1 a1 q累加法
等比数列 { an },公比为 ,它的前 n 项和
q
aa
n 1
Sn a1 a2 a3
n
a2 a3 a4 an a2 a3
a1 q a2 q a3 q
an 1q
an q( a1 a2 a3
an 1 )
Sn a1 q( Sn an )
(1 q)Sn a1anq
可能也有同学会想到由等比定理得
---
-
Sn a1 a2 a3
a2 a3
a1 a2 a2 a3
an
aaan an
n 1
q
q
即 a1 a2 San n 1
1 an q Sn
(1 q)Sn a1 anq
【设计意图:共享学习成果,开拓了思维,感受数学的奇异美 (五).归纳提炼,构建新知。 [ 时间设定: 3 分钟 ]
提出问题 8: 由
】
(1- q)s = aq
1? q 1 时是什么数列?此时 Sn ?
【设计意图:通过反问精讲,一方面使学生加深对知识的认识, 完善知识结构,增强思维的严谨性】
.
提出问题 9: 等比数列的前 n项和公式怎样 ?
a1 (1 q )
n
, q 1
a1 an q
Sn1 学生归纳出 Sn
, q 1
1 q
na1, q 1 q
na1 , q 1
【设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解 (六)层层深入,掌握新知 。[ 时间设定: 15 分钟 ]
】
基础练习 1已知 an 是等比数列 , 公比为 q
(1)若a=,q=,则S 1 3
3n(2).则a1
2, q 1,则Sn
练习 2 判断是非
n 2 1
1 (1 2 )
n(1).1-2+4-8+16-
+ -2
2 3
n
1 ( 2)
n
1 (1 2 )
(2).1 2
2
2
2
2
3
8
1 2
8a(1 a )
1 a
(3).a a
a
a
【设计意图:通过两道简单题来剖析公式中的基本量.进行正反两方面的“短、浅、快” 练习.通
---
-
过总结、辨析和反思,强化公式的结构特征. 】
例 1 已知数列 an 是等比数列 , 完成下表
题号 a1 (1) 1/2 (2) 27 q 1/2 2/3
n
8
an
Sn
8
( ) -2 -96
-6
33【设计意图:渗透方程思想 .通过公式的正用和逆用进一步提高学生运用知识的能力 三求二 ”的题型 】
.掌握公式中 ”知
练习 3:求等比数列 1, 1 , 1 , ,
2 4 8 16
1 1 1
11前 8 项和;
63
变式 1、等比数列 2 , 4 , 8 ,16,
前多少项的和是 64 ;
111变式 2、等比数列
, , 1 , , 求第 5 项到第 10 项的和;
2 4 8 16
变式 3、等比数列 a,a,a,
2
3a, 求前 2n 项中所有偶数项的和。
n
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光
点,给予热情表扬。 )
【设计意图:变式训练 ,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思
想】.
练习 4
有一位大学生毕业后到一家私营企业去工作,试用期过后,老板对这位大学生很欣赏,
有意留下他,就让这位大学生提出待遇方面的要求,这位学生提出了两种方案让老板选择,其一:
工作一年,月薪五千元;其二:工作一年,第一个月的工资为
20 元,以后每个月的工资是上月工资
的 2 倍,此时,老板不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。请你分析一下,老板的选择是否正确?
【设计意图: 让学生进一步认识到数学来源于生活并应用于生活,生活中处处有数学.
】
(七)总结归纳,加深理解。 [ 时间设定: 2 分钟 ]
(1)等比数列的求和公式是什么?应用时要注意什么? (2)用什么方法可以推导了等比数列的求和公式?
【设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构】
(八)课后作业,巩固提高。 [ 时间设定: 1 分钟 ]
必做:( 1)P66练习 1
---
-
研究性作业:请上网查阅“芝诺悖论”
选做:求和: 1 2 2 22 3 23 4 24
n
2n
【设计意图:为了使所有学生巩固所学知识,布置了“必做题”
;“选做题”又为学有余力者留有自
.】 由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野
七、教学反思:
本节课立足课本,着力挖掘,设计合理,层次分明。充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,
通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究
能力的训练,引导学生发现数学的美,体验求知的乐趣。
---
高中数学教学设计题模板4
高中数学教学设计模板
想要提升提高课堂教学效率,相关的高中数学教学设计是必要的准备工作。以下是小编为大家精心整理的高中数学教学设计模板,欢迎大家阅读。
高中数学教学设计模板【1】
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
1.等差数列的概念;
2.等差数列的通项公式
等差数列“等差”特点的理解、把握和应用
投影片1张
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:(V)课后作业
一、课本P118习题 1,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
高中数学教学设计模板【2】
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
一、学前准备
复习:
1.(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;
(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;
二、新课导学
◆探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
◆应用示例
例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1) 甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
◆反馈练习
1.(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于__45的正整数?
2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学教学设计题模板5
教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法启发式教学法讲授法
学法指导
自主学习法讨论交流法练习巩固法
教学准备
ppt课件导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1.观赏生活中有关圆的图片
2.回顾复习圆的定义,并观看圆的生成flas_。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用
自主学习
(5分钟)
1.介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程;
(4)化简:对P(M)方程化简到最简形式;
2.学生自主学习圆的方程推导,并完成相应学案内容,
教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1.根据圆的标准方程说明确定圆的方程的条件有哪些?
2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
学生展开合作性的探讨,并陈述自己的研究成果。
通过合作探究和自我的展示,鼓励学生合作学习的品质
当堂训练(18分钟)
1.求下列圆的圆心坐标和半径
C1:x2+y2=5
C2:(x-3)2+y2=4
C3:x2+(y+1)2=a2(a≠0)
2.以C(4,-6)为圆心,半径等于3的圆的标准方程
3.设圆(x-a)2+(y-b)2=r2
则坐标原点的位置是()
A.在圆外B.在圆上
C.在圆内D.与a的取值有关
4.写出下列各圆的标准方程(1)圆心在原点,半径等于5
(2)经过点P(5,1),圆心在点C(6,-2);
(3)以A(2,5),B(0,-1)为直径的圆.
5.下列方程分别表示什么图形
(1)x2+y2=0
(2)(x-1)2=8-(y+2)2
(3)《圆的标准方程》教学设计-贾伟
6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图
指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。
学生自主开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1.你学到了哪些知识?
2.你掌握了哪些技能?
3.你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
教学反思
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。
你知道怎么写初中数学最新教案设计方案吗?总结公式的等号两边的特点,用语言表达公式的内容。通过逐层深入的练习,巩固完全平方公式两种形式的应用。一起看看初中数学最新教案设计方案!欢迎查阅!
初中数学最新教案设计方案1
课题名称:完全平方公式(1)
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体:多媒体六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答]分组交流、讨论
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判断:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小试牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结]通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业]P34随堂练习P36习题
初中数学最新教案设计方案2
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、
对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一) 复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1) 正方形的周长C和它的一边的长a之间的关系
(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3) 矩形的面积为10时,它的长x和宽y之间的关系
(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定
义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1) 写出y与x之间的函数解析式
(2) 当x=3.5时,求y的值
(3) 当y=5时,求x的值
通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在
解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。
课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式
(1)x=2,y=3 (2)x= ,y=
通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。
(二)探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数 和 的图象;
(2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3) 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1) 在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2) 在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。
从而引导学生画出正确的函数图象。
(3) 图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。
巩固练习:画出函数 和 的图象
通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。
(三) 探究学习2——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数 的分布情况是怎么样的呢?
提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?
在这一环节中的设计:
(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;
(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;
(3)组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
2、 图象的变化情况
问题7:正比例函数 图象的变化情况是怎么样的呢?
提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。
问题8:那反比例函数的图象,是否也具有这样的性质呢?
在这一环节的教学设计是:
(1)回顾反比例函数 和 的图象,通过实际观察;
(2)根据解析式对行取值,比较x在取不同值时函数值的变化情况;
(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。
(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=-2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。
问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。
(四) 备用思考题
1、 反比例函数 的图象在第一、三象限,求a的取值范围
2、
(1) 当m为何值时,y是x的正比例函数
(2) 当m为何值时,y是x的反比例函数
(五) 小结:
初中数学最新教案设计方案3
一、 教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、 教学过程设计1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知
4.知识拓展,巩固深化5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 2002年国际数学 的一枚纪念邮票 大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:这节课你的收获是什么?
作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料.
板书设计 探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
看完北师大版《实数》教学设计有什么收获吗?欢迎分享给您的朋友及同学!
相关热词搜索: 实数 教学设计 北师大版上一篇:体育课安全教育及防范教学设计盘点
下一篇:互相垂直的两条直线教学设计解读
最新推荐New Ranking
党建联建协议书设计
2一个豆荚里的五粒豆教学设计第二课时(4篇)一个豆荚里的五粒豆教学设计第二课时
3白鹭教学设计及设计意图(3篇)白鹭教学设计及设计意图
4小学高部快乐写作教学设计(6篇)小学高部快乐写作教学设计
5军神教学设计一等奖部编版(4篇)军神教学设计一等奖部编版
6七年级上生物教学总结(8篇)七年级上生物教学总结
7评设计高工工作总结(4篇)评设计高工工作总结
8幼儿园小班主题活动:秋天来了教学设计下面是小编为大家整理的幼儿园小班主题活动:秋天来了教学设计,供大家参考。新修订幼儿园阶段原创精品...
9幼儿园:小班主题活动——秋天来到田野里教学设计下面是小编为大家整理的幼儿园:小班主题活动——秋天来到田野里教学设计,供大家参考。新修订幼儿园阶...
10小学教师教学业绩总结下面是小编为大家整理的小学教师教学业绩总结,供大家参考。小学教师教学业绩总结小学教师教学业绩总结...