数据分析心得体会
下面是小编为大家整理的数据分析心得体会,供大家参考。
数据分析心得体会
在数据分析这门课程当中主要学习了numpy和pandas和数据挖掘的知识,学习过程很充实,也不是很难。
首先学习了Numpy,NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,主要学习了1、矩阵生成,2、矩阵切片,3、轴对换、相乘,4、条件填入(where),5、数据处理。NumPy 是一个运行速度非常快的数学库,主要用于数组计算。
在pandas中有两类非常重要的数据结构,即序列Series和数据DataFrame。Series 类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用。之后学习了数据索引index,包括了通过索引值或索引标签获取数据以及自动化对齐;此外,pandas 模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数;在SQL中常见的操作主要是增、删、改、查几个动作,那么pandas能否实现对数据的这几项操作呢?答案是Of Course! 我们发现,不论是删除行还是删除列,都可以通过drop方法实现,只需要设定好删除的轴即可,即调整drop方法中的axis参数。默认该参数为0,表示删除行观测,如果需要删除列变量,则需设置为1。在Excel中有一个非常强大的功能就是数据透视表,通过托拉拽的方式可以迅速的查看数据的聚合情况,这里的聚合可以是计数、求和、均值、标准差等。pandas 为我们提供了非常强大的函数pivot_table(),该函数就是实现数据透视表功能的。
数据挖掘的技术与方法相关知识包括:数据挖掘的方法分为描述性与预测性两种。其中描述性数据挖掘指的是分析具有多个属性的数据集,找出潜在的模式和规律,没有因变量。要采用的算法:聚类、关联分析、因子分析、主成分分析等。预测性数据挖掘指的是用一个或多个自变量预测因变量的值。主要算法:决策树、线性回归Logistic 回归、支持向量机、神经网络、判别分析。
通过这几天的学习我了解到数据分析的复杂性和难度,想要学好的它,还需要我花费很长时间。
相关热词搜索: python总结心得体会 心得体会 分析 数据上一篇:党员干部干事创业心得体会
最新推荐New Ranking
党建工作考核实施方案
2形象工程政绩工程排查报告(2篇)形象工程政绩工程排查报告
3工会委员分工一览表(7篇)工会委员分工一览表
4人民至上生命至上心得体会(5篇)人民至上生命至上心得体会
5党内诗歌朗诵活动方案(7篇)党内诗歌朗诵活动方案
6双减情况下如何提高教学质量(7篇)双减情况下如何提高教学质量
72024年市委关于加强新时代公安工作的意见(9篇)市委关于加强新时代公安工作的意见
8怎样看待党员(5篇)怎样看待党员
9重大事项请示报告落实情况汇报重大事项请示报告落实情况汇报
102024年地方人大提供法律援助(4篇)地方人大提供法律援助